Math 115
Summer 2017
Lecture 4

Solving Linear Inequalities
final ans will be

$x>a$	$x \geq a$
$x<a$	$x \leq a$

$a<x<b \quad b<x \leq a$
we perform all steps

$$
b \leq x<a
$$

as we did with solving $b \leq x \leq a$
linear equations, however, we must reverse in equality whenever we divide, or Multiply by a

Solve

$$
\begin{gathered}
2 x-3<7 \\
2 x<7+3 \\
2 x<10 \\
\frac{2}{2} x<\frac{10}{2} \\
x<5
\end{gathered}
$$

Solve

$$
\begin{gathered}
-3 x+4>19 \\
-3 x>19-4 \\
-3 x>15 \\
\frac{-3}{-3} x<\frac{15}{-3} \\
x<-5
\end{gathered}
$$

There are 3 ways to express final ans.

- Set-Builder notation - Interval notation
- Graphing

Solve

$$
\begin{gathered}
2(x-8)-6 x \leq 16 \\
2 x-16-6 x \leq 16 \\
-4 x-16 \leq 16 \\
-4 x \leq 16+16 \\
-4 x \leq 32 \\
-4 \geq \frac{-4}{-4} x \geq \frac{32}{-4}
\end{gathered}\left\{\begin{array} { c }
{ \frac { 1 } { 2 } x + \frac { 5 } { 6 } \geq \frac { 3 } { 4 } x - \frac { 5 } { 1 2 } } \\
{ \text { use } L C D \text { to clear fractions } } \\
{ L C D = 1 2 } \\
{ \frac { 2 } { x } \cdot \frac { 1 } { 2 } x + 2 \cdot \frac { 5 } { 6 } \geq 1 2 \cdot \frac { 3 } { 4 } x - 1 2 \cdot \frac { 1 } { 1 2 } } \\
{ 6 x + 1 0 \geq (9 x) - 5 } \\
{ x \geq - 8 }
\end{array} \left\{\begin{array}{c}
6 x-9 x \geq-5-10 \\
-3 x \geq-15 \\
\frac{-3}{-3} x \leq \frac{-15}{-3}
\end{array} \quad x \leq 5\right.\right.
$$

Solve

Solve, express final ans in all 3 ways.
$-4 x-8>12$
$-4 x>12+8$
$- 4 x \longdiv { > 2 0 }$

$$
\begin{gathered}
\frac{-4}{-4} x<\frac{20}{-4} \\
x<-5
\end{gathered}
$$

(1) Set-Builder notation

$$
\{x \mid x<-5\}
$$

(2) Graph

(3) Interval notation

$$
(-\infty,-5)
$$

Solve, express final ans in all 3 ways

$$
\begin{gathered}
-2 x+8 \leq 3 x-22 \\
-2 x-3 x \leq-22-8 \\
-5 x \leq-30 \\
\frac{-5}{-5} x \geq \frac{-30}{-5} \\
x \geq 6
\end{gathered}
$$

(1)S.B.N.

$$
\{x \mid x \geq 6\}
$$

(2) Graph

(3) I.N. $[6, \infty)$
$\frac{2}{5}(x-3)<\frac{3}{4}(x+2)+1 \quad$ Solve, express final answer in all use $L C D=20$ to clear fractions. 3 ways.

$$
\begin{aligned}
& 20 \cdot \frac{2}{5}(x-3)<26 \cdot \frac{3}{4}(x+2)+20 \cdot 1 \\
& \begin{array}{l}
8(x-3)<15(x+2)+20 \\
8 x-24<15 x+30+20
\end{array} \begin{array}{l}
\text { (S.B.N. }
\end{array} \\
& 8 x-15 x<50+24 \\
& -7 x \leqslant 74 \\
& \frac{-7}{-7} x>\frac{74}{-7} \\
& \text { (3) I.N. }\left(\frac{-74}{7}, \infty\right)
\end{aligned}
$$

Solve $\quad-3<2 x+5 \leq 13$
we want to isolate the variable in the middle. $\quad-3-5<2 x+5>5 \leq 13-5$
(1)S.B.N. $\quad-8<2 x \leq 8$

$$
\{x \mid-4<x \leq 4\} \quad \frac{-8}{2}<\frac{2}{2} x \leq \frac{8}{2}
$$

(2) Graphing

$$
-4<x \leq 4
$$

(3)I.N.

$$
(-4,4]
$$

Solve $\quad 5 \leq 3 x-4<17$
Add $4 \quad 5+4 \leq 3 x-4+4<17+4$
$\begin{aligned} & \text { to undo } \\ & \text { subtraction }\end{aligned} \quad 9 \leq 3 x<21$
Divide by 3

$$
\frac{9}{3} \leq \frac{3}{3} x<\frac{21}{3}
$$

to undo multiplication

$$
3 \leq x<7
$$

(1)S.B.N.
(2) Graph $\{x \mid 3 \leq x<7\}$

(3)I.N. $[3,7)$

Solve, Give Ans in all 3 ways:

$$
\left.\left.\left.\begin{array}{l}
2<-3 x+2 \leq 17 \\
2-2<-3 x \leq 17-2 \\
0<-3 x \leq 15
\end{array}\right\} \frac{0}{-3}\right\} \frac{-3}{-3} x\right\} \frac{15}{-3}
$$

Divide by -3
It is better and
(1)S.B.N. $\{x \mid-5 \leq x<0\}$ less confusing to have Smaller \# of the
(2) Graph
(3) I.N. $[-5,0)$ left side.

$$
-5 \leq x<0
$$

The sum of two numbers is 67 .
One of them is 1 less than 3 times The other one. find both numbers.

First $\# \Rightarrow x$
Second $\# 1 \Rightarrow 3 x-1$
The numbers are $\mathcal{L} 17$ \& 50.

$$
\begin{gathered}
\text { First }_{x}^{x}+\text { Second }=67 \\
4 x-1=67 \\
x=68
\end{gathered}
$$

PTA purchased 42 Tkts for a trip to the zoo.
The number of kids was 2 fewer than 3 times the number of adults.

$$
\text { Kids } \rightarrow 3 x-2
$$

How many Kids? Adults $\rightarrow x$

$$
\begin{array}{lr}
3(11)-2 & \begin{aligned}
& 3 \text { Kids + Adults }=42 \\
&=33-2 \\
&=31
\end{aligned}
\end{array}
$$

Lisa ordered 76 color pens.
Red, Blue, Green.
\# of blue pens was twice $\#$ of red pens.
\# of green pens was 8 less than 4 times the number of red pens. How many
Red $\rightarrow x$ of each?

Blue $\rightarrow 2 x$
Green $\rightarrow 4 x-8$
12 Red, 24 Blue, and 40 Green Pens.

John had a piece of wood 33 ft long. He cut it into 3 pieces.

Second piece was half of the first piece.
Third pice was one-third of the first pieces find all three e pieces.
First $\rightarrow x \in\left[x+\frac{1}{2} x+\frac{1}{3} x=33\right.$
Second $\rightarrow \frac{1}{2} x+$ LCD $=6$
Third $\rightarrow \frac{1}{3} x \Theta \quad 6 x+3 x+2 x=6.33$

$$
11 x=6.33 \quad x=18
$$

WP $4 \rightarrow$ Due Monday
Solve $\dot{\varepsilon}$ identify the type of equation:

$$
\begin{aligned}
& 2(3 x-5)-4(x+8)=2(x+3)-48 \\
& 2 x-42=2 x-42 \\
& 2 x-2 x=-42+42 \\
& 0=0 \quad \text { infinitely Many Solus. } \\
& \text { Identity. }
\end{aligned}
$$

1) Solve $Z=\frac{x-M}{S}$ for x. Hint: Clear fraction

$$
\begin{aligned}
& L C D=S \\
& S Z=X-M \\
& S Z+M=X
\end{aligned}
$$

(2) Solve $A=\frac{h(B+b)}{2}$ for h.

$$
\begin{aligned}
& 2 A=h(B+b) \\
& \frac{2 A}{B+b}=h
\end{aligned}
$$

(3) Solve

$$
\begin{aligned}
& A=\frac{h(B+b)}{2} \text { for } B . \\
& 2 A=h(B+b) \\
& 2 A=h B+h b \\
& 2 A-h b=h B \\
& \frac{2 A-h b}{h}=B
\end{aligned}
$$

Solve for y, write ans in the form of

$$
\begin{array}{ll}
(2 x-3 y=9 \\
-3 y=-2 x+9 \\
y=\frac{-2}{-3} x+\frac{9}{-3} \\
4 x+2 y=10 \\
\text { Divisible by } 2 \\
\text { (2x)}+y=5
\end{array}, \begin{aligned}
& y=m x+b \\
& y=\frac{2}{3} x-3
\end{aligned}
$$

Solve for y

$$
\begin{array}{r}
2 x+3 y \leq 6 \\
3 y \leq-2 x+6 \\
y \leq \frac{-2}{3} x+\frac{6}{3} \\
y \leq \frac{-2}{3} x+2
\end{array}\left\{\begin{array} { l }
{ \{ 3 x - 4 y > 1 2 } \\
{ - 4 y > - 3 x + 1 2 } \\
{ \text { Divide by - } }
\end{array} \left\{\begin{array}{l}
y<\frac{-3}{-4} x+\frac{12}{-4} \\
y<\frac{3}{4} x-3
\end{array}\right.\right.
$$

Simplify

$$
\begin{aligned}
& \frac{3}{5}\left(10 x^{2}-15 x+5\right)-6 x^{2}+9 x-3 \\
& =\frac{3}{5} \cdot 10 x^{2}-\frac{3}{5} \cdot 15 x+\frac{3}{5} \cdot 5-6 x^{2}+9 x-3 \\
& =6 x^{2}-9 x+3-6 x^{2}+9 x-3 \\
& =0
\end{aligned}
$$

Due Monday:
.WP 4
CQ \Rightarrow Due

- WP 5

Sunday
. SG 3,4 :5 CQ2 \Rightarrow Friday
Two sides of a triangle are equal.
The third side is 3 cm shorter than the sum of equal sides.

1) Draw $\dot{\varepsilon}$ label
2) find all three sides if the perimeter is 25 cm .

$$
\begin{gathered}
P=25 \\
a+b+c=25 \\
x+2 x-3+x=25 \\
\vdots \\
x=7
\end{gathered}
$$

$\sum 7 \mathrm{~cm}, 7 \mathrm{~cm}$, and 11 cm .

A rectangular garden has a perimeter of 40 m .
Its length is 4 m longer than its width.

1) Draw $\dot{\varepsilon}$ label

2) find its dimensions

$$
p=40
$$

$$
2 L+2 W=40
$$

$$
2(x+4)+2 x=40
$$

A triangular Carpet has a perimeter of 52 ft .
One side is twice another side.
Third side is 7 ft move than the longer Side of the first two Sides.
find the third side.

$$
\begin{aligned}
& P=52 \\
& a+b+c=52 \\
& x+2 x+7+2 x=52 \\
& 5 x=52-7
\end{aligned} \quad \begin{array}{ll}
\begin{array}{ll}
5 x=45 & 2(9)+7 \\
x=9 & =25
\end{array} \\
\text { Third side is } 25 \mathrm{ft}
\end{array}
$$

A rectangular classroom has a perimeter of 144 ft .
The length is 2 ft shorter than 3 times its width.
find its dimensions.

$$
\begin{gathered}
2 L+2 W=144 \\
2(3 x-2)+2 x=144 \\
\vdots \\
x=18.5
\end{gathered}
$$

Lisa got 72 and 88 on first 2 exams. In order to get B for the class, She needs an average of at teas 80. Final exam counts as 2 tests.
what score on the final exam does she need to get a B?

$$
\begin{aligned}
\text { Average } & \geq 80
\end{aligned} \frac{\text { Total Pts }}{\frac{\text { Fl of exams }}{4}} \geq 80
$$

Solve $\quad \frac{72+88+2 F}{4} \geq 80$

$$
\begin{aligned}
& L C D=4 \\
& 72+88+2 F \geq 4(80) \\
& 160+2 F \geq 320 \\
& 2 F \geq 320-160 \\
& 2 F \geq 160 \quad F \geq 80
\end{aligned}
$$

Lisa needs at least 80 on the final to secure a B grade.

Jessica is moving to a new location. She has $\$ 100$ budget.
Rental truck goes for \$25/day : $50 \neq$ Per mile. Find the distance that she can move to. Total cost at most $\$ 100$

$$
\left.\begin{array}{l}
M \leq \frac{75}{.5} \\
M \leq 150 \\
\left\{\begin{array}{l}
75 \text { miles } \\
\text { radius }
\end{array}\right.
\end{array}\right\} \begin{gathered}
\text { cost } \leq 100 \\
25+. .50 M \leq 100 \\
.5 M \leq 100-25 \\
.5 M \leq 75
\end{gathered}
$$

Jose has a small business.
He needs to open a checking account.

$$
B \text { of } A \Rightarrow \$ 5 / \text { Month }+8 \$ / \text { check }
$$

wells fargo $\Rightarrow \$ 10 /$ Month $+3 \$ /$ check
find the number of checks in any month that he can write and wells fargo would be a better deal.

$$
\operatorname{Cos} t
$$ Cost

Cost less
Wells fargo $10+.03 C \angle 5+.08 C$

$$
\begin{aligned}
& .03 C-.08 C<5-10 \\
& -.05 C \boxed{K}-5 \\
& C>\frac{-5}{-.05} \quad C>100
\end{aligned}
$$

Wells Fargo is a better deal if Jose writes more than 100 Checks Per month.

